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ABSTRACT
Customers arrive independently to receive service at either of two businesses, each
managed by a single server, according to Poisson processes with different rates. The
customers’ service times are independent and exponentially distributed with server-
specific rates. The customers of both businesses wait at a limited-capacity common
service facility. When new arrivals to either business find the facility full, they depart
for good without waiting. But if the facility is not full, customers are admitted
anytime during the business hours each day and are served by their respective servers
even if that takes them past the closing time.

We study the limiting behavior of these two M/M/1 queuing systems sharing a
common facility with capacity constraint N to answer these questions relevant to
the servers: (Q1) What percentage of customers does each server lose? (Q2) What
percentage of time does each server remain idle during regular business hours? (Q3)
At closing time, how many customers are waiting to be served by each server?

KEYWORDS
Memoryless property; semi-Markov process; embedded Markov chain; stationary
distribution; expected sojourn time

1. Introduction

Because real estate is so expensive in a crowded city, some businesses may choose to
team up to share the same facility and lower their cost of operation. The businesses
need designated areas and specialized instruments to operate, but customers can wait
in a common area equipped with essential amenities but with limited capacity. For
example, the following businesses may agree to share the same facility: an insurance
agent and a mortgage agent, a travel agent and a financial advisor, a psychologist and a
therapist, or a lawyer and a real estate broker. Such cooperation between professions
that are socioeconomically compatible yet non-competitive is likely to be mutually
beneficial and sustainable.

Businesses contemplating sharing a common facility with capacity constraint N
would like answers to these questions: (Q1) What percentage of customers does each
server lose? (Q2) What percentage of time does each server remain idle during regular
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business hours? (Q3) At closing time, how many customers are waiting to be served
by each server?

The paper is organized as follows: In Section 2, we model the stochastic evolution
of the arrival, wait, service, and departure of customers in the service facility in terms
of a continuous-time stochastic process (CTSP). In Section 3, we derive expressions of
the limiting distributions of the CTSP. Section 4 numerically evaluates limiting distri-
butions. Section 5 presents an alternative numerical computation. Section 6 answers
the questions listed in the previous paragraph. Section 7 concludes the paper with a
summary and some directions for future research.

2. Description of the CTSP

As time progresses, customers arrive at a service station with a common waiting area
to receive service from Business A or B (but not both). In the next three subsections:
(1) we shall model the arrival times and the service times; (2) we shall describe the
state of the stochastic process according to the numbers of customers who came to
server A and server B, respectively; and (3) we shall identify an embedded discrete-
time stochastic process (DTSP) by focusing on the epochs when a customer arrives or
when a customer’s service is completed and the customer leaves the facility. This last
step explains the CTSP as a semi-Markov process.

2.1. Modeling inter-arrival times and service times

Suppose that businesses A and B share the same facility. Customers to these businesses
arrive at the facility independently according to Poisson processes with rates λ1 and
λ2, respectively. In particular, the inter-arrival times between successive arrivals to
business A are independent exponential(λ1) variables (with mean 1/λ1), and the inter-
arrival times to business B are independent exponential(λ2) variables. Also, assume
that the service times of business A are independent exponential(µ1) variables, service
times of business B are independent exponential(µ2) variables, and these two sequences
of service times are independent of each other.

Recall that the exponential distribution has the memoryless property: no matter how
much time has already elapsed, the remaining time is still exponentially distributed
with the same parameter! That is, if X has exponential(λ) distribution, then P{X >
t + s|X > s} = P{X > t} for all s, t > 0. Also, if X1 and X2 are independent
exponential variables with rates λ1 and λ2 respectively, then Z = min{X1, X2} is an
exponential(λ1 + λ2) variable, and P{Z = X1} = λ1/(λ1 + λ2) = 1− P{Z = X2}.

As a consequence of these properties of independent exponential variables, not only
at the epoch of arrival or the epoch of departure (immediately after service is over)
of a customer but also at any time the future prospect of the evolution of the process
has the same distribution as that at the latest arrival or departure epoch. This future
prospect changes only at the epoch of the next arrival or departure. The duration until
the next arrival or departure depends only on the present state defined by the pair of
numbers of customers in the service facility either being served or waiting to be served
by the two servers (or businesses).
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2.2. State space and transition rates

Suppose that businesses A and B share the same waiting room with capacity N ≥ 1.
For convenience, imagine that there are N chairs available — chairs for clients being
served, chairs for clients waiting to be served, and empty chairs, if any. The state space
is given by

S = {(i, j) : 0 ≤ i, j ≤ i+ j ≤ N} (1)

consisting of 1 + 2 + 3 . . . + N + (N + 1) = (N + 1)(N + 2)/2 =
(
N+2
2

)
states. For

convenience of sorting the states in a well-defined order, we also label state (i, j) as

l = l(i, j) =

(
i+ j + 1

2

)
+ j + 1 =

(
i+ j + 2

2

)
− i. (2)

For N = 1, only one business can operate at a time, and if so [that is, if the state
is (1, 0) or (0, 1)], all arrivals to either business are lost for good, but when both
businesses are idling [or the state is (0, 0)], a new arrival to either business can enter
the facility and receive service from the intended server immediately.

For N = 2, the following situations are possible: (1) both businesses are operating
simultaneously [state (1, 1)]; (2) one business is operating with another client waiting
for the same business [state (2, 0) or (0, 2)]; (3) one business is operating with no
one waiting [state (1, 0) or (0, 1)]; (4) both businesses are idling [state (0, 0)]. In cases
(1) and (2), all new arrivals to either business are lost for good because, finding no
available seat in the waiting room, they go to a competitor to receive service. In cases
(3) and (4), any new arrival to either server can enter the service facility and she will
receive service immediately if her server is free, or join the queue if her server is serving
a previously arriving customer.

Figure 1 shows the state space and the transition rates for N = 5 as an illustration.
Readers should study it carefully so that they can restrict it or generalize it to all
N ≥ 1. It also classifies the states into one of seven categories according as the total
transition rate in effect in that state.

A thick arc represents the arrival of a customer (a right arc or a top arc indicates that
the newly arriving customer needs service from either business A or B, respectively). A
thin arc represents the departure of a customer (a left arc or a down arc indicates that
a customer’s service has been completed by business A or B, respectively). Note also
that the states are classified into seven categories (different shades of gray) according
as the total transition rate in effect is

a = λ1 + λ2, b = λ1 + λ2 + µ1, c = λ1 + λ2 + µ2,

d = λ1 + λ2 + µ1 + µ2, e = µ1 + µ2, µ1, µ2.
(3)

We hope an attentive reader can restrict or generalize Figure 1 to any N ≥ 1. The
resultant CTSP is denoted by the symbol 2(M/M/1)/N , representing a paired M/M/1
queuing systems with shared capacity constraint N . The goal is to find the limiting
probability θl that the stochastic process is in state l = (i, j) ∈ S.

We found this problem posed in [5] as Exercise 5.24. To the best of our knowledge
the solution is not published anywhere.
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Figure 1. States and transition rates when capacity is N = 5.

2.3. The CTSP is a semi-Markov process

First, let us focus on the epochs of transitions from one state to another when a
customer arrives or departs. The corresponding DTSP is a Markov chain because
the transition probabilities depend only on the current state (explained in the next
paragraph) and not on the history of how the process arrived at the current state.
Second, the sojourn time in each state has a distribution dependent on the current
state (but not on the next state).

For example, for N = 5, the sojourn time in state 5, has the same distribution
as that of min{X1, X2, Y1, Y2} where Xk has exponential(λk) distribution and Yk has
exponential(µk) distribution and all four random variables are independent. Likewise,
the sojourn time in state 6 has the same distribution as that of min{X1, X2, Y2}. The
sojourn time in state 16 is exponential(µ1).

Given the transition rates in effect in each state l = (i, j), the transition probabilities
for the DTSP are found by dividing each rate by the total rate. This is because the
actual transition is determined by the minimum of several independent exponential
variables with the given rates. Once the transition has happened, by the memoryless
property of exponential variables, the next transition is determined by the (possibly
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new) transition rates in effect in the new state. The unique values of all transition
probabilities are defined by the following constants

a1 = λ1/a, a2 = λ2/a;
b1 = λ1/b, b2 = λ2/b, b3 = µ1/b;
c1 = λ1/c, c2 = λ2/c, c3 = µ2/c;
d1 = λ1/d, d2 = λ2/d, d3 = µ1/d, d4 = µ2/d;
e1 = µ1/e, e2 = µ2/e.

(4)

From the definitions of a–e given in (3), it follows that

1 = a1 + a2 = b1 + b2 + b3 = c1 + c2 + c3 = d1 + d2 + d3 + d4 = e1 + e2.

For example, for N = 1 and N = 2, the transition rates are (we omit 0’s so that we
can better focus on the non-zero rates only)

R1 =

 λ1 λ2

µ1

µ2

 and R2 =


λ1 λ2

µ1 λ1 λ2

µ2 λ1 λ2

µ1

µ2 µ1

µ2



whence, dividing each row by the sum of entries in that row, the transition probability
matrices become

P1 =

 a1 a2
1
1

 and P2 =


a1 a2

b3 b1 b2
c3 c1 c2

1
e2 e1

1



We intentionally skip the 10× 10 transition matrix P3 for N = 3 so that the reader
can verify their understanding after studying the pattern of non-zero rates in the entire
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15× 15 transition probability matrix P4 given by

P4 =



a1 a2
b3 b1 b2
c3 c1 c2

b3 b1 b2
d4 d3 d1 d2

c3 c1 c2
b3 b1 b2
d4 d3 d1 d2

d4 d3 d1 d2
c3 c1 c2

1
e2 e1

e2 e1
e2 e1

1



(5)

Readers will do well to note the pattern in the transition matrix P4: Read it as a 5×5
block matrix with the diagonal consisting of square matrices of sizes 1×1, 2×2, . . . , 5×5
with all entries zero. The four cells just above the diagonal have matrices of sizes
1× 2, 2× 3, 3× 4, 4× 5 with step-by-step right-staggered rows

(a1, a2); (b1, b2), (c1, c2); (b1, b2), (d1, d2), (c1, c2); (b1, b2), (d1, d2), (d1, d2), (c1, c2).

The four cells just below the diagonal have matrices of sizes 2 × 1, 3 × 2, 4 × 3, 5 × 4
with step-by-step right-staggered rows

b3, c3; b3, (d4, d3), c3; b3, (d4, d3), (d4, d3), c3; 1, (e2, e1), (e2, e1), (e2, e1), 1.

Having observed the pattern in P4, the attentive reader should be able to construct
PN for all N ≥ 1.

For any N ≥ 1, there are finitely many states (to be exact
(
N+2
2

)
states) that

communicate with one another (that is, there is a positive probability of going from
one state to the other in finitely many steps). Therefore, the DTSP is irreducible
(belongs to one single communication class).

Readers will benefit from examples of other CTSPs treated as semi-Markov pro-
cesses found in [4].

3. Limiting Proportion of Time Spent in Each State

We shall use the ergodic theorem of a semi-Markov process (see Theorem 4.8.3 of [5],
for example) whose proof relies on the strong law of large numbers (see [1]) and the
strong law for renewal processes (see [8]). These are typically taught in an introductory
graduate course in probability theory or stochastic processes.

Theorem 3.1. Suppose that a semi-Markov process is irreducible with successive re-
turns to state l having a non-lattice distribution. Let π be the row-vector of the sta-
tionary probability distribution for the embedded DTSP satisfying πP = π and let ν be
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the row-vector of the expected sojourn times in the various states. Then the limiting
proportion of time the CTSP spends in state l (or the limiting probability that the
CTSP will be found in state l) is given by

θl =
πl νl∑
k πk νk

. (6)

Recall that each state l is classified into one of seven categories according as the
total transition rate is a, b, c, d, e, µ1, µ2. Accordingly, the sojourn time in state l being
the minimum of several independent exponential variables, the expected sojourn time
νl is the reciprocal of the total transition rate in effect in state l.

In view of Theorem 3.1, our remaining task is to find the stationary distribution π
of the DTSP, or any arbitrary multiple of π. We should emphasize that it does not
matter how we discover π since once proposed, we can check if it satisfies π P = π. If
so, the uniqueness theorem (see, for example, Theorem 4.3.3 of [5]) guarantees that
there is no other stationary distribution.

Clearly, for N = 1, we can verify that π1 ∝ (1, a1, a2) satisfies π1 P1 = π1. Hence,

θ ∝ (1/a, a1/µ1, a2/µ2) ∝ (1, λ1/µ1, λ2/µ2).

For N = 2, if we guess the stationary distribution is of the form π2 ∝ (∗, 1, x, ∗, ∗, ∗),
then by setting π2 P2 = π2, we can fill in the unspecified values to obtain

π2 ∝ (b3 + c3x, 1, x, b1, b2 + c1x, c2x)

Next, setting the third element of π2, we get x = a2(b3 + c3x) + e1(b2 + c1x) + c2x, or

x =
a2b3 + b2e1

1− a2c3 − c1e1 − c2
.

Or, setting the second element of π2, we get 1 = a1(b3 + c3x) + b1 + (b2 + c1x)e2, or

x =
1− a1b3 − b1 − b2e2

a1c3 + c1e2
.

To verify that the above two expressions of x are identical, we can check that the
denominators are identical and so are the numerators. That is,

1− a2c3 − c1e1 − c2 = 1− c3 + a1c3 − c1 + c1e2 − c2 = a1c3 + c1e2,

and

1− a1b3 − b1 − b2e2 = 1− b3 + a2b3 − b1 − b2 + b2e1 = a2b3 + b2e1.

To develop insight into the solution for N ≥ 3, we wish to study in the next two
subsections two special cases — (1) λ1 = λ2 = µ1 = µ2, and (2) λ1 = λ2, µ1 = µ2.
Thereafter, the solutions to the special cases will inspire us to conjecture the solution
to the general case, which we will verify to be true.
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3.1. Stationary distribution when λ1 = λ2 = µ1 = µ2

Without loss of generality, let λ1 = λ2 = µ1 = µ2 = 1. Then the DTSP reduces to a
symmetric random walk on the vertices of a graph where each vertex is a state and an
edge joins two vertices if and only if a direct (one-step) transition is possible between
them. The random walk is symmetric because, from any vertex, the DTSP is equally
likely to move to any one of the adjacent vertices. In this special case of a symmetric
random walk, the stationary distribution is given by a theorem found in Lovasz [2].

Theorem 3.2. For a symmetric random walk on the vertices of a finite graph, the
stationary distribution has probabilities proportional to the degrees of the vertices.

In view of Theorem 3.2, for N ≤ 4, the stationary distributions are respectively
proportional to

(2; 1, 1),

(2; 3, 3; 1, 2, 1),

(2; 3, 3; 3, 4, 3; 1, 2, 2, 1),

(2; 3, 3; 3, 4, 3; 3, 4, 4, 3; 1, 2, 2, 2, 1).

We invite the reader to write down the stationary distribution for N = 5 following the
above pattern.

Since the expected sojourn time in each state is the reciprocal of the corresponding
element in π, the long-run proportions of time spent in various states, θ, are given by
a discrete uniform distribution — a pleasantly surprising result — reminiscent of a
similar result in [6] for a symmetric random walk on the vertices of a polygon.

3.2. Stationary distribution when λ1 = λ2 and µ1 = µ2

Without loss of generality, let λ1 = λ2 = ρ and µ1 = µ2 = 1. For N ≤ 4, the stationary
distributions are respectively proportional to

(2; 1, 1),

(2; 1 + 2ρ, 1 + 2ρ; ρ, 2ρ, ρ),

(2; 1 + 2ρ, 1 + 2ρ; ρ(1 + 2ρ), 2ρ(1 + ρ), ρ(1 + 2ρ); ρ2, 2ρ2, 2ρ2, ρ2),

(2; 1 + 2ρ, 1 + 2ρ; ρ(1 + 2ρ), 2ρ(1 + ρ), ρ(1 + 2ρ);

ρ2(1 + 2ρ), 2ρ2(1 + ρ), 2ρ2(1 + ρ), ρ2(1 + 2ρ); ρ3, 2ρ3, 2ρ3, 2ρ3, ρ3).

(7)

This we know by checking that π P = π. Again, we invite the reader to write down
the stationary distribution for N = 5 following the above pattern.

For N = 1, the total transition rates in the three states are (2ρ, 1, 1); for N = 2,
they are (2ρ, 1 + 2ρ, 1 + 2ρ, 1, 2, 1); and for N ≥ 3, the total transition rates in the
seven categories of states are respectively, (2ρ, 1 + 2ρ, 1 + 2ρ, 2(1 + ρ), 1, 2, 1), the
corresponding expected sojourn times are element-wise reciprocals. Hence, for N ≤ 4,
the proportions of time spent in various states (after multiplying all entries by ρ) are
respectively proportional to
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(1; ρ, ρ),

(1; ρ, ρ; ρ2, ρ2, ρ2),

(1; ρ, ρ; ρ2, ρ2, ρ2; ρ3, ρ3, ρ3, ρ3),

(1; ρ, ρ; ρ2, ρ2, ρ2; ρ3, ρ3, ρ3, ρ3; ρ4, ρ4, ρ4, ρ4, ρ4).

(8)

Thus, the limiting proportion of time spent in state (i+ j) is proportional to ρi+j ,
a geometric progression — again, a pleasantly surprising result — reminiscent of a
similar result in [6] for an asymmetric random walk on the vertices of a polygon.
Of course, as ρ → 1, the solutions in this subsection approach those in the previous
subsection.

3.3. Solution under arbitrary parameters

Recall that the vector θ of limiting proportions of time the CTSP spends in various
states in S is proportional to the coordinate-wise product of the vector π of steady-
state probabilities of the DTSP that satisfies π P = π, and the vector ν of expected
sojourn times. We can directly solve for θ (without first finding π) using the matrix R
of transition rates. Let us illustrate the method for N = 4. Generalizing to any N is
easy.

Recall that π4 is found by solving π4 P4 = π4. However, P4 = D−1
4 R4, where D4 is

a diagonal matrix with diagonal entries given by the row totals of R4; that is,

D4 = diag (a; b, c; b, d, c; b, d, d, c;µ1, e, e, e, µ2).

Hence, π4 satisfies π4D
−1
4 R4 = π4; or equivalently, π4D

−1
4 R4 = π4D

−1
4 D4. Next,

recall that θ4 ∝ π4D
−1
4 . Therefore, our task is to solve θ4R4 = θ4D4.

Let us revisit the special case λ1 = λ2 = ρ, µ1 = µ2 = 1. In this special case, for
N = 4, the 15× 15 transition rate matrix is

R4 =



ρ ρ
1 ρ ρ
1 ρ ρ

1 ρ ρ
1 1 ρ ρ

1 ρ ρ
1 ρ ρ
1 1 ρ ρ

1 1 ρ ρ
1 ρ ρ

1
1 1

1 1
1 1

1


Taking row sums of R4, we see that D4 is a diagonal matrix given by
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D4 = diag(2ρ; 1 + 2ρ, 1 + 2ρ; 1 + 2ρ, 2(1 + ρ), 1 + 2ρ;

1 + 2ρ, 2(1 + ρ), 2(1 + ρ), 1 + 2ρ; 1, 2, 2, 2, 1).

It is easy to check that

θ4 ∝ (1; ρ, ρ; ρ2, ρ2, ρ2; ρ3, ρ3, ρ3, ρ3; ρ4, ρ4, ρ4, ρ4, ρ4)

satisfies θ4R4 = θ4D4.
The result for N = 4 easily generalizes to any N .
The insight developed in the special case prompts us to anticipate the following:

Theorem 3.3. For the general case of arbitrary parameters λ1, λ2, µ1, µ2, letting ρ1 =
λ1/µ1 and ρ2 = λ2/µ2, the proportions of times spent in various states 1 through

(
N+2
2

)
of S are given by

θ ∝
(
1; ρ1, ρ2; ρ21, ρ1ρ2, ρ

2
2; ρ31, ρ

2
1ρ2, ρ1ρ

2
2, ρ

3
2; ρ41, ρ

3
1ρ2, ρ

2
1ρ

2
2, ρ1ρ

3
2, ρ

4
2; · · ·

)
. (9)

Proof. First, we verify the claim for N = 4, say, when the transition rate matrix is

R4 =



λ1 λ2

µ1 λ1 λ2

µ2 λ1 λ2

µ1 λ1 λ2

µ2 µ1 λ1 λ2

µ2 λ1 λ2

µ1 λ1 λ2

µ2 µ1 λ1 λ2

µ2 µ1 λ1 λ2

µ2 λ1 λ2

µ1

µ2 µ1

µ2 µ1

µ2 µ1

µ2


Recall that D4 is a diagonal matrix given by the row sums of R4; that is,

D4 = diag (a; b, c; b, d, c; b, d, d, c;µ1, e, e, e, µ2).

Specializing (9) for N = 4, we have

θ4 ∝
(
1; ρ1, ρ2; ρ21, ρ1ρ2, ρ

2
2; ρ31, ρ

2
1ρ2, ρ1ρ

2
2, ρ

3
2; ρ41, ρ

3
1ρ2, ρ

2
1ρ

2
2, ρ1ρ

3
2, ρ

4
2

)
.

It is straight-forward to check that θ4 satisfies θ4R4 = θ4D4.
Generalizing to any N is routine. This completes the proof.

Having found θ up to a proportionality constant, the constant of proportionality is
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seen to be the reciprocal of

σN = 1 + (ρ1 + ρ2) + (ρ21 + ρ1ρ2 + ρ22) + . . .+ (ρN1 + ρN−1
1 ρ2 + . . .+ ρN2 ). (10)

In general, when ρ1 ̸= ρ2, ρ1 ̸= 1 and ρ2 ̸= 1, σN reduces to

σN =
1

ρ1 − ρ2

{
(ρ1 − ρ2) + (ρ21 − ρ22) + (ρ31 − ρ32) + . . .+ (ρN+1

1 − ρN+1
2 )

}
=

1

ρ1 − ρ2

{
ρ1

1− ρN+1
1

1− ρ1
− ρ2

1− ρN+1
2

1− ρ2

}
.

When ρ1 = ρ2 = ρ, say, then from (10), σN = 1 + 2ρ + 3ρ2 + . . . + (N + 1)ρN as we

have already seen in Subsection 2.2. Furthermore, when ρ = 1, then σN =
(
N+2
2

)
as

seen in Subsection 2.1. Also, when ρ1 ̸= ρ2 = 1, then

σN = (N + 1) +Nρ1 + (N − 1)ρ21 + . . .+ 2ρN−1
1 + ρN1 .

Etc.
Of course, without loss of generality, any one of the four parameters (λ1, λ2, µ1, µ2)

can be chosen as unity. (This is a matter of choosing the time unit.) That ought to leave
three parameters arbitrary. Therefore, it is mildly surprising that θ depends on only
two ratios (ρ1 = λ1/µ1, ρ2 = λ2/µ2). However, the stationary distribution π depends
on all four parameters. In fact, using Theorem 9, we can reconstruct the stationary
distribution as π ∝ θD4, or π ∝

(
a; bρ1, cρ2; bρ21, dρ1ρ2, cρ

2
2; bρ31, dρ

2
1ρ2, dρ1ρ

2
2, cρ

3
2; µ1ρ

4
1, eρ

3
1ρ2, eρ

2
1ρ

2
2, eρ1ρ

3
2, µ2ρ

4
2

)
.

Again, finding the stationary distribution π when N is arbitrarily large is a routine
matter which we leave to the reader.

4. Numerical Evaluation and Graphical Display

For any N ≥ 1, θ, the limiting proportion of times spent in various states can be found
from (9) in Theorem 9, and thereafter the stationary distribution π can be found as
π ∝ θD, analogous to (3.3). However, numerical values of π and θ being tedious to
read, we depict them as stick diagrams of the probability mass functions (PMF) of
π and θ. For N = 15, if the parameter values are λ1 = λ2 = µ1 = µ2 = 0.50, we
know that θ is uniformly distributed (see subsection 2.1). Figure 2 shows how the
PMF changes when some parameters are changed to 0.25. As anticipated, when the
arrival rates are lower than service rates, the probabilities concentrate towards the
lower states (top panel), and conversely (second panel). Also, when the arrival rate of
one business is lower, then the number of customers for that business are lower than
that of the other business (third panel). On the other hand, if the service rate of one
business is slower, then more customers for that business will remain in the queue
(bottom panel).
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Figure 2. For some choices of parameters (λ1, λ2, µ1, µ2), we depict the stationary distribution π15 and
limiting time distribution θ15.
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5. Evaluating π Using a Numerical Method

Here we illustrate an alternative method of finding π (and hence θ ∝ πD−1) via
numerical computations, without invoking Theorem 9.

Suppose that λ1 = 2, λ2 = 3, µ1 = 4, µ2 = 5. Then a = 5, b = 9, c = 10, d =
14, e = 9. Let N = 3. Then the transition probability matrix is P3, and the stationary
distribution π3 satisfies π3 P3 = π3. Of course, then π3 P

n
3 = π3 for any n ≥ 1. We shall

successively square the P3 matrix until all 152 elements of P 2k

3 and P 2k+1

3 differ by no
more than .0001. This criterion is satisfied for k = 6. Each column of P 26

3 consists of
two distinct values — a zero and a non-zero. Indeed, π is proportional to the vector
of non-zero elements in the columns of P 26

3 as shown in cmax in the R codes below.
Also, noting that ρ1 = 2/4 = .5 and ρ2 = 3/5 = .6, indeed θ satisfies (9) as shown in
theta/theta[1] in the R codes below. R is a freeware, see [3].

> round(P,4)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 .4000 .6000 0 0 0 0 0 0 0
[2,] .4444 0 0 .2222 .3333 0 0 0 0 0
[3,] .5000 0 0 0 .2000 .3000 0 0 0 0
[4,] 0 .4444 0 0 0 0 .2222 .3333 0 0
[5,] 0 .3571 .2857 0 0 0 0 .1429 .2143 0
[6,] 0 0 .5000 0 0 0 0 0 .2000 .3000
[7,] 0 0 0 1 0 0 0 0 0 0
[8,] 0 0 0 .5556 .4444 0 0 0 0 0
[9,] 0 0 0 0 .5556 .4444 0 0 0 0
[10,] 0 0 0 0 0 1 0 0 0 0
> round(Q,4) # P^64

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] .3322 0 0 .1495 .2791 .2392 0 0 0 0
[2,] 0 .2990 .3987 0 0 0 .0332 .0897 .1076 .0718
[3,] 0 .2990 .3987 0 0 0 .0332 .0897 .1076 .0718
[4,] .3322 0 0 .1495 .2791 .2392 0 0 0 0
[5,] .3322 0 0 .1495 .2791 .2392 0 0 0 0
[6,] .3322 0 0 .1495 .2791 .2392 0 0 0 0
[7,] 0 .2990 .3986 0 0 0 .0332 .0897 .1076 .0717
[8,] 0 .2990 .3987 0 0 0 .0332 .0897 .1076 .0718
[9,] 0 .2990 .3987 0 0 0 .0332 .0897 .1076 .0718
[10,] 0 .2990 .3987 0 0 0 .0332 .0897 .1076 .0718
> round(cmax,4)
[1] 0.3322 0.2990 0.3987 0.1495 0.2791 0.2392 0.0332 0.0897 0.1076 .0718
> round(pi,4) # cmax/sum(cmax)
[1] 0.1661 0.1495 0.1993 0.0748 0.1395 0.1196 0.0166 0.0449 0.0538 .0359
> round(nu,4)
[1] 0.2000 0.1111 0.1000 0.1111 0.0714 0.1000 0.2500 0.1111 0.1111 0.2000
> prod=pi*nu; theta=prod/sum(prod)
> round(theta,4)
[1] 0.2717 0.1358 0.1630 0.0679 0.0815 0.0978 0.0340 0.0408 0.0489 0.0587
> round(theta/theta[1],4) # same as (2.4)
[1] 1.0000 0.5000 0.6000 0.2500 0.3000 0.3600 0.1250 0.1500 0.1800 0.2160

6. Answers to the Questions Raised in the Abstract

Having studied the limiting behavior of two M/M/1 queuing systems sharing a com-
mon facility with capacity N , we can answer some questions the two servers might
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have wondered about when they contemplated sharing a facility:

(Q1) What percentage of customers do the servers lose? When the system is in any
one of states {(N − j, j) : j = 0, 1, . . . , N}, the arrivals to the two businesses at
exponential rates λ1 and λ2, respectively, do not enter the waiting room and are
lost for good. Therefore, each server loses the same proportion of their respective
customers given by

N∑
j=0

θ(N − j, j) = (ρN1 + ρN−1
1 ρ2 + . . .+ ρ1ρ

N−1
2 + ρN2 ) /σN . (11)

With such perfect equality in the proportion of customers lost, the two busi-
nesses will have no axe to grind against each other.

(Q2) What percentage of time do the servers remain idle during regular business
hours? Server 1 remains idle in states {(0, j) : j = 0, 1, . . . , N} for a total pro-
portion of time given by

N∑
j=0

θ(0, j) = (1 + ρ2 + ρ22 + . . .+ ρN2 ) /σN =
1− ρN+1

2

σN (1− ρ2)
(12)

Likewise, Server 2 remains idle in states {(i, 0) : i = 0, 1, . . . , N} for a total
proportion of time given by

N∑
i=0

θ(i, 0) = (1 + ρ1 + ρ21 + . . .+ ρN1 ) /σN =
1− ρN+1

1

σN (1− ρ1)
(13)

(Q3) At closing time, how many customers are in the facility either being served or
waiting to be served by each server? The number of customers being served or
waiting to be served by Server 1 is a discrete random variable W1 with

P{W1 = k} =

N−k∑
j=0

θ(k, j) = ρk1 (1+ ρ2+ . . .+ ρN−k
2 )/σN = ρk1

1− ρN−k+1
2

σN (1− ρ2)
(14)

for k = 0, 1, . . . , N . Similarly, the number of customers being served or waiting
to be served by Server 2 is a discrete random variable W2 with

P{W2 = k} =

N−k∑
i=0

θ(i, k) = ρk2 (1+ ρ1 + . . .+ ρN−k
1 )/σN = ρk2

1− ρN−k+1
1

σN (1− ρ1)
(15)

for k = 0, 1, . . . , N . The service times being independent, the total time to serve
k customers at closing time is a gamma(k, λh) variable, for h = 1, 2.
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7. Conclusion

We studied two intertwined M/M/1 queuing systems sharing a limited-capacity com-
mon facility. Assuming exponential inter-arrival times and exponential service times,
we found the long-run proportions of time the system spends in various states defined
by the pair of numbers of customers for the two servers. We have both theoretically
derived and computationally evaluated the limiting results. Furthermore, for each
server, we have determined the proportion of customers lost, the proportion of time
spent idling, the number of remaining customers at closing time, and the additional
duration to serve them.

There are several naturally anticipated extensions to this topic. For example, what
if three or more businesses choose to share a common waiting room? Under similar
assumptions on arrival and service time distributions, the results, though tedious, can
be extended without much difficulty. Again, all servers will lose the same proportion
of customers, preventing any unproductive contentious situation.

The exponential distribution, though a good starting point for developing mathe-
matical theory, is not a perfect representation of inter-arrival times or service times in
many real-life situations. We leave to future researchers to study other distributions
such as gamma that may better reflect how real-world businesses operate. See [7] for
an illustration of how an exponential model extends to a gamma model.

Additionally, customer demands may be better represented by non-homogeneous ar-
rival processes. While this generalization is beyond the scope of the analytical solutions
presented here, it may nonetheless be fruitful to examine simple non-homogeneous dis-
tributions in simulations in the hope of later finding a more elegant solution.

Last but not least is the extension to two or more M/M/k systems where there are
k ≥ 2 servers for each business.
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